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METHOD AND SYSTEM FOR PARALLEL
MULTILEVEL SIMULATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a National Stage of International Appli-
cation No. PCT/US2011/033793 filed Apr. 25, 2011, which
claims the benefit of Provisional Patent Application 61/367,
713, filed Jul. 26, 2010 entitled METHOD AND SYSTEM
FOR PARALLEL MULTILEVEL SIMULATION, the
entireties of which are incorporated by reference herein.

FIELD OF THE INVENTION

Exemplary embodiments of the present techniques relate
to a method for simulating a property of at least one fluid in a
fluid-containing physical system. The physical system can be
represented by a multiplicity of volumetric cells and a mul-
tiplicity of connections between cells.

BACKGROUND

This section is intended to introduce various aspects of the
art, which may be associated with exemplary embodiments of
the present techniques. This discussion is believed to assist in
providing a framework to facilitate a better understanding of
particular aspects of the present techniques. Accordingly, it
should be understood that this section should be read in this
light, and not necessarily as admissions of prior art.

Modern society is greatly dependant on the use of hydro-
carbons for fuels and chemical feedstocks. Hydrocarbons are
generally found in subsurface rock formations that can be
termed “reservoirs.” Removing hydrocarbons from the reser-
voirs depends on numerous physical properties of the rock
formations, such as the permeability of the rock containing
the hydrocarbons, the ability of the hydrocarbons to flow
through the rock formations, and the proportion of hydrocar-
bons present, among others.

Often, mathematical models termed “simulation models™
are used to simulate hydrocarbon reservoirs and optimize the
production of the hydrocarbons. A simulation model is a type
of computational fluid dynamics simulation where a set of
partial differential equations (PDE’s) which govern multi-
phase, multi-component fluid flow through porous media and
the connected facility network is approximated and solved.
This is an iterative, time-stepping process where a particular
hydrocarbon production strategy is optimized.

Simulation models map the underlying partial differential
equations on a structured (or unstructured) grid, which may
be termed discretization. The grid, which may be termed a
computational mesh, represents the reservoir rock, wells, and
surface facility network. State variables, such as pressure and
saturation, are defined at each grid block. The goal of a
simulation model is generally to understand the flow patterns
of'the underlying geology in order to optimize the production
of hydrocarbons from a set of wells and surface facilities.
During the past five decades, the size and complexity of
simulation models have grown proportionally with the
increased availability of computing capacity. Complex simu-
lation models often require the use of parallel computing
systems and algorithms to provide adequate simulation turn-
around time.

Reservoir simulation is of great interest because it infers
the behavior of a real hydrocarbon-bearing reservoir from the
performance of a model of that reservoir. The typical objec-
tive of reservoir simulation is to understand the complex
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chemical, physical and fluid flow processes occurring in the
reservoir sufficiently well to predict future behavior of the
reservoir to maximize hydrocarbon recovery. Reservoir simu-
lation may often refer to the hydrodynamics of flow within a
reservoir, but, in a larger sense, reservoir simulation can also
refer to a total hydrocarbon system. This may include not only
the reservoir, but also injection and/or production wells, sur-
face flow lines, and surface processing facilities. Reservoir
simulation calculations in such hydrocarbon systems can be
based on simulations of fluid flow throughout the entire sys-
tem. These calculations are performed with varying degrees
of rigor, depending on the requirements of the particular
simulation study and the capabilities of the simulation soft-
ware being used.

The principle of numerical simulation is to numerically
solve equations describing a physical phenomenon using a
computer. Such equations are generally algebraic equations,
ordinary differential equations (ODE), and/or partial difter-
ential equations (PDE). As a means for solving differential
equations, ODE and/or PDE, numerically, there are known
methods such that the finite difference method, the finite
volume method, the finite element method, and the like.
Regardless of which method is used, the physical system to be
modeled is divided into cells, a set of which is called a grid or
mesh, and the state variables that vary in time and in space
throughout the model are represented by sets of values for
each cell. The reservoir rock properties such as porosity and
permeability are typically assumed constant inside a cell.
Other variables such as fluid pressure and phase saturation are
defined at specified points, sometime called nodes, within the
cell (or sometimes on the boundaries between the cells). A
link between two nodes is called a “connection.” Fluid flow
between two cells is typically modeled as flow along the
connection between them.

Most reservoir simulators use so-called structured grids in
which the cells are assumed to be three-dimensional rectan-
gular shapes distorted to conform as well as possible to geo-
logical features and flow patterns. Certain geological features
and modeling situations cannot be represented well by struc-
tured grids. For example, slanted wells, faults, or fractures,
which can naturally occur in the reservoir models, are almost
impossible to model using structured grids.

These shortcomings can be overcome in part by using local
refinement, in which selected cells are subdivided into
smaller cells, and non-neighbor connections, which allow
flow between cells that are physically adjacent to each other
but are not adjacent in the data structure. A more powerful
solution to this problem is to exploit the flexibility provided
by layered unstructured grids, when a computational domain
is split into geological layers and, in each layer, a grid is
formed by a number of laterally contiguous grid cells. The
cells forming any layer have corresponding neighbors in the
layers located above and below the current one. Such a grid
usually is called “2.5D grid.”

Even such grids are not sufficient to describe all the vari-
ability of complex geologic structures present in real hydro-
carbon reservoirs such as branching wells, complex Y-faults,
or pinch-outs, i.e. cases when the geological layer disappear
inside the reservoir. The only solution to this problem is to
exploit the flexibility provided by an unstructured grid.

In a simulation, a set of equations is developed to express
the fundamental principles of conservation of mass, energy,
and/or momentum within each cell and of movement of mass,
energy, and/or momentum between cells. The replacement of
the state variables that vary in space throughout a model by a
finite number of variable values for each cell is called “dis-
cretization.” For proper resolution of the modeled physical
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processes, hundreds of thousands and even millions of cells
may be required. That may lead to the millions of equations to
be solved.

In order to analyze a phenomenon changing in time, it is
necessary to calculate physical quantities at discrete intervals
of time called time steps, irrespective of the continuously
changing conditions as a function of time. Time-dependent
modeling of the transport processes therefore proceeds in a
sequence of time steps. During a time step, transport of vari-
ous kinds occurs between cells. Through this transport, a cell
can exchange mass, momentum, or energy with other nearby
cells.

The equations governing the behavior of each cell during a
time step couple the mass, momentum, and energy conserva-
tion principles to the transport equations. At every time step,
the simulator must solve one, or more, large matrix equations,
Ax=b, where A is a matrix, b is a known right hand side
vector, and x is a vector of unknowns, with the number of
unknowns depending on the type of time step computation
method being used. Because matrix equations are quite large,
having at least one equation per cell, they are solved itera-
tively except in case of small models.

Various time step computations have been proposed for
reservoir simulation. Two most commonly used calculation
methods are called “IMPES” and “Fully Implicit” In the
IMPES method, which is derived from the term “implicit-
pressure, explicit-saturation,” flows between neighboring
cells are computed based on pressures at their values at the
end of the time step. The pressures at the end of the IMPES
time step are interdependent and must be determined simul-
taneously. This method is called “implicit” because each
pressure depends on other quantities that are known only
implicitly. The basic procedure is to form a matrix equation,
Ax,=b,, that is implicit in pressures only, solve the matrix
equation for the pressures x,,, and then use the pressures in
computing saturations explicitly cell by cell. In this fashion,
after the pressures have been advanced in time, the saturations
are updated explicitly. After the saturations are calculated,
updated physical properties such as relative permeability’s
and capillary pressures can be calculated. Those are explicitly
used at the next time step. Similar treatment can be used for
other possible solution variables such as concentrations, com-
ponent masses, temperature, or internal energy.

The fully implicit method treats both pressure and satura-
tions implicitly. Flow rates are computed using phase pres-
sures and saturations at the end of each time step. The calcu-
lation of flow rates, pressures, and saturations involves the
solution of nonlinear equations using a suitable iterative tech-
nique. At each iteration, the method constructs and solves a
matrix equation, the unknowns of which (pressure and satu-
rations) change over the iteration:

The matrix of this matrix equation is often called “Jaco-
bian”” As the pressures and saturations are solved, the updat-
ing of these terms continues using new values of pressure and
saturation. The iteration process terminates when predeter-
mined convergence criteria are satisfied. Further information
about reservoir simulation and computation techniques may
be found in D. W. Peaceman, Fundamentals of Numerical
Reservoir Simulation, Elsevier, N.Y., 1977; K. Aziz and A.
Settari, Petroleum Reservoir Simulation, Applied Science
Publishers Ltd, Barking, Essex, England, 1979; C. C. Mat-
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taxand R. L. Dalton, Reservoir Simulation, Monograph, Vol-
ume 13, Society of Petroleum Engineers, 1990; U.S. Pat. No.
6,052,520 t0 J. W. Watts; and U.S. Pat. No. 6,662,146 to J. W.
Watts. As mentioned above the matrix equations obtained
after discretization of the governing equations for reservoir
simulation may have hundreds of thousands and even mil-
lions of unknowns. In practice, such systems can be solved
only by iterative methods. See, for example, Y. Saad, lterative
Methods for Sparse Linear Systems, 2nd ed., Society for
Industrial and Applied Mathematics (SIAM), 2003. The con-
vergence rate of iterative methods and hence, the time spent
on solving such systems, depend on the property of the matri-
ces which is called condition number. The usual way to
reduce the computational time is to reduce the condition
number by employing a preconditioner B that is rewriting the
system using the equation:

B lax=B"'p.

In this equation, matrix B provides reasonable approxima-
tions to matrix A. Further, matrix B can be inexpensively
inverted.

There are many different preconditioners for precondi-
tioned iterative methods to solve matrix equations arising in
reservoir simulation. Some of them can be applied only to the
problems approximated on structured (See, e.g., P. T. Woo, S.
J.Roberts, and F. G. Gustavson, Application of Sparse Matrix
Techniques in Reservoir Simulation, SPE 4544, 1973) or
almost structured grids (European Patent Application EP 2
068 263) and hence cannot be applied in case of generic
unstructured grids. Some other methods apply incomplete
LU factorizations (U.S. Pat. No. 6,230,101 B1 to J. R. Wallis)
or singular value decomposition (SVD) reduction (U.S.
Patent Application Publication No. 2007/0255779), both
hardly parallelizable. Algebraic multigrid (AMG) methods
are known to be most efficient methods of solving reservoir
matrix equations. T. Clees and L. Ganzer, An Efficient Alge-
braic Multigrid Solver Strategy for Adaptive Implicit Meth-
ods in Oil Reservoir Simulation, SPE 105789, 2007. Unfor-
tunately, the coarsening process of the AMG method applied
directly to the reservoir matrix A may lead to the matrices
with the increased nonzero patterns on the coarser levels,
especially for non-symmetric problems, which can be not
very useful for efficient parallelization. Much better approach
is to combine multiplicatively a version of block-IL.UO pre-
conditioner for the full system with an AMG cycle for the
pressure block. T. M. Al-Shaalan, H. Klie, A. H. Dogru, and
M. F. Wheeler, Studies of Robust Twwo Stage Preconditioners
for the Solution of Fully Implicit Multiphase Flow Problems,
SPE 118722, 2009; J. M. Gratien, T. Guignon, J. F. Magras, P.
Quandalle, and O. Ricois, Scalability and Load-Balancing
Problems in Parallel Reservoir Simulation, SPE 106023,
2007. This combinative approach is known as the “con-
strained pressure residual” (CPR) technique.

Because general-purpose computing in reservoir simula-
tion can require substantial computing resources, proposals
have been made to subdivide a simulation model into smaller
segments and to perform computations in parallel on multi-
processor computer or cluster of (possibly multi-processor)
computing nodes. The principal attraction of parallel com-
puting is the ability to reduce the elapsed time of simulation,
ideally by a factor of N for an N-processor computing system.
Parallel computing falls short of the ideal because of several
factors, including recursion in linear equation solution, the
overhead associated with message passing required for vari-
ous computations, and load imbalances due to heterogene-
ities in the problem physics and characterization of the hydro-
carbon fluids.
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There are several approaches to constructing parallel pre-
conditioners for linear problems arising in reservoir simula-
tion. Most of them are based on overlapping domain decom-
position. O. Dubois, 1. D. Mishev, and L. Zikatanov, Erergy
Minimizing Bases for Efficient Multiscale Modeling and Lin-
ear Solvers in Reservoir Simulation, SPE 119137, 2009; U .S.
Pat. No. 7,516,056 to J. Wallis, et al.; P. Lu, J. S. Shaw, T. K.
Eccles, I. D. Mishev, and B. L. Beckner, Experience with
Numerical Stability, Formulation and Parallel Efficiency of
Adaptive Implicit Methods, SPE 118977, 2009. The basic
idea of this method is that the computational domain is split
into (non-overlapping) subdomains and each subdomain is
assigned to a different processing unit of a parallel computer.
Then each subdomain is extended by one or several layers of
neighboring cells to get overlap. On each subdomain, the
reservoir matrix is restricted to the cells of that (extended)
subdomain. The local problems then can be computed in
parallel by different processors using any existing technique
(e.g. ILU or AMG) and the global solution is obtained by
special type superposition of the local solutions from each
subdomain. Generally, the convergence of the iterative
method with overlapping domain decomposition is indepen-
dent of the mesh size when the width of the overlapping
region is kept proportional to the diameter of the subdomains.
However, the convergence deteriorates linearly as the number
of subdomains increases, preventing the method to be scal-
able. To remedy this problem, a coarse component can be
added to the preconditioner, which allows for a global mean
computation and communication across all subdomains.
Such a two-level preconditioner is closely related to a multi-
grid (a two-grid) method, but in which the coarse space is
generally much coarser compared to the fine grid. The per-
formance of this type of preconditioner depends strongly on
the decomposition of the domain.

U.S. Patent Application Publication No. 2007/0010979 by
Wallis, et al., discloses an overlapping domain decomposition
with one layer of overlap but special procedure for implemen-
tation of multigrid method. The connections between any two
adjacent subdomains are lamped together with no regard of
their respective values. Even though the method claims the
efficiency of the obtained in such a way preconditioner is
good, there is an overhead connected with small connections
(by value) as they are transferred to the coarser levels.

The approach disclosed in U.S. Patent Application Publi-
cation No. 2006/0245667 by Fung, et al., can be applied to
structured grid, 2.5D grid, or the combination of both as long
as the resulting grid has layered structure. The method is
claimed to work on a variety of computer platforms, such as
shared-memory computers, distributed memory computers,
or personal computer clusters. The approach heavily depends
on the assumption of layered structure of the underlying grid.
It splits computational domain laterally into vertical columns
and distributes the split parts into separate computational
nodes. The method described in that patent cannot be applied
to the reservoir simulation models defined on general
unstructured grids or can use any other type of partitioning of
the grid cells between the computational nodes.

All the approaches described above employ a Krylov-type
iterative solver like gradient minimal residual (GMRES) or a
biconjugate gradient stabilized (BiCGStab). See Saad, Y.,
Iterative Methods for Sparse Linear Systems, 2nd ed., Society
for Industrial and Applied Mathematics (SIAM), 2003. One
of'the properties of these solvers is that on each iteration there
is a need to compute two or more inner products. In distrib-
uted parallel environment that means that for each iteration a
small amount of information should be distributed globally
between all the processors. However, global message passing
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has bad scalability, e.g., its cost grows as the number of
processing units involved in the computations increases. See
Message Passing Interface Forum, MPI: A Message-Passing
Interface Standard, Version 2.1 (June 2008). Moreover, this
global transfer of information enforces natural barriers,
which may also create additional misbalance in computa-
tions.

Thus, when domain decomposition or multigrid method is
used on the parallel system with multiple CPUs, the informa-
tion should be exchanged on each iteration between neighbor
CPUs and globally, between all CPUs. In addition, multigrid
methods are based on reduction in the number of unknowns in
matrix equation, which usually leads to the increased number
of connections between unknowns on the coarser levels,
which in turn increases the cost of exchange of the informa-
tion between CPUs during each iteration.

Addressing the aforementioned issues may lead to more
efficient methods of solving sparse matrix equations for res-
ervoir models on parallel computers with multiple CPUs.
Namely, an iterative method, which limits or avoids global
communications between CPUs may be more efficient than
methods that propagate information globally. A multigrid
method that is capable of controlling the number of connec-
tions between unknowns on coarser levels will be more effi-
cient than the one in which the number of connections grows
uncontrollably.

SUMMARY

An exemplary embodiment of the present techniques pro-
vides a method of performing a reservoir simulation. The
method includes generating a data representation in a storage
system, wherein the data representation includes an intercon-
nection weight that represents the magnitude of an intercon-
nection between each of a number of computational cells in a
computational mesh. A threshold value is compared to each
interconnection weight and any interconnection weight that is
equal to or less than the threshold value is set to zero.

The method may include determining the threshold value
by calculating a maximum interconnection weight for inter-
connections of each of the number of computational cells to
all adjoining computational cells. The largest value of the
maximum interconnection weight is identified for all of the
plurality of computational cells. The smallest value of the
maximum interconnection weights for all of the plurality of
computational cells. The threshold value is selected to lie
between the largest value and the smallest value. The thresh-
old value may be an average of the largest value and the
smallest value.

The data representation may include a matrix in which
each diagonal element represents one of the plurality of com-
putational cells in the computational mesh, and the method
further includes generating the interconnection weights
between each of the plurality of computational cells from
off-diagonal elements in the matrix. Comparing the threshold
value to each interconnection weight, and, for each of the
plurality of computational cells that have an interconnection
weight equal to or less than the threshold value, setting the
off-diagonal elements to zero. Any rows in the matrix that
have no remaining off-diagonal elements are eliminated to
generate a lower level matrix.

One or more additional lower level of matrices may be
created by iterating through the determination of a new
threshold value, followed by generating interconnection
weights from the oft-diagonal elements for each computa-
tional cell in the lower level matrix. At each iteration, the
threshold value is compared to each interconnection weight,
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and, for each computational cell in the lower level matrix that
has an interconnection weight equal to or less than the thresh-
old value, the oft-diagonal elements are set to zero. Any rows
in the lower level matrix that have no remaining off-diagonal
elements are set to zero to generate a lower level matrix. A
preconditioner may be generated by restricting the solution to
the lower level matrix. Further, a preconditioner may be cre-
ated by iteratively restricting the solution to each higher level
matrix, starting from a lowest level matrix, and proceeding to
a highest level matrix.

The method may also include generating a lower level
computational mesh in the storage system by eliminating any
one of the plurality of computational cells from the compu-
tational mesh that has no interconnections to other computa-
tional cells. The method may include generating a sequence
of lower level computational meshes in the storage system by
iteratively: generating a new threshold value for the lower
level computational mesh; comparing a threshold value to
each interconnection weight and setting any interconnection
weight that is equal to or less than the threshold value to zero;
and eliminating any computational cell from the computa-
tional mesh that has no interconnections to other computa-
tional cells to create a next lower level computational mesh.

The method may include generating a preconditioner that
restricts a solution to a lowest level computational mesh; and,
iteratively, generating a preconditioner that restricts the solu-
tion to a next higher computational mesh until a highest level
computational mesh is reached. The preconditioner may be
used in a Krylov-type iterative method to perform a reservoir
simulation. The Krylov-type iterative method may include a
gradient minimal residual (GMRES) method or a biconjugate
gradient stabilized (BiCGStab) method.

Another exemplary embodiment of the present techniques
provides a method for managing hydrocarbon production
from a reservoir. The method includes simplifying a compu-
tational mesh by generating a data representation of the com-
putational mesh in a storage system, wherein the data repre-
sentation comprises an interconnection weight that represents
the magnitude of an interconnection between each of a num-
ber of computational cells in the computational mesh. A
threshold value is compared to each interconnection weight
and any interconnection weight that is equal to or less than the
threshold value is set to zero. Any of the number of compu-
tational cells that have no interconnections to other compu-
tational cells are eliminated to create a lower level computa-
tional mesh. A preconditioner is generated by restricting a
solution to the lower level computational mesh. A hydrocar-
bon reservoir is simulated using the preconditioner.

The method may include generating a sequence of lower
level computational meshes in the storage system by itera-
tively generating a new threshold value for the lower level
computational mesh. At each iteration, a threshold value is
compared to each interconnection weight and any intercon-
nection weight that is equal to or less than the threshold value
is set to zero. Any computational cell in the computational
mesh that has no interconnections to other computational
cells is eliminated to create a next lower level computational
mesh. A preconditioner that restricts a solution to a lowest
level computational mesh is generated. A preconditioner is
iteratively generated by restricting a solution to a next higher
computational mesh until a highest level computational mesh
is reached.

The method may also include identifying new locations for
production wells or injection wells based, at least in part,
upon a result from the simulation of the hydrocarbon reser-
voir. The method may include determining whether to convert
a production well into an injection well, convert an injection
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well into a production well, or any combinations thereof,
based, at least in part, on a result from the simulation of the
hydrocarbon reservoir.

Another exemplary embodiment of the present techniques
provides a non-transitory, computer readable medium that
comprises code. The code can be configured to direct a pro-
cessor to generate a data representation in a storage system,
wherein the data representation comprises an interconnection
weight that represents the magnitude of an interconnection
between each of a number of computational cells in a com-
putational mesh. The code can direct the processor to com-
pare a threshold value to each interconnection weight, and set
any interconnection weight that is equal to or less than the
threshold value to zero.

The non-transitory, computer readable medium may also
include code configured to direct the processor to calculate a
maximum interconnection weight for interconnections of
each of the plurality of computational cells to all adjoining
computational cells. The code may direct the processor to
identify the largest value of the maximum interconnection
weight for all of the plurality of computational cells, identify
the smallest value of the maximum interconnection weight
for all of the plurality of computational cells, and select the
threshold value to lie between the largest value and the small-
est value.

The non-transitory, computer readable medium may also
include a matrix in which each diagonal element represents
one of the plurality of computational cells in the computa-
tional mesh. Further, the non-transitory, computer readable
medium can include code configured to direct the processor
to generate the interconnection weights between each of the
number of computational cells from off-diagonal elements in
the matrix. The code directs the processor to compare the
threshold value to each interconnection weight, and for each
computational cell that has an interconnection weight equal
to or less than the threshold value, to set the off-diagonal
elements to zero. The code can also direct the processor to
eliminate any rows in the matrix that have no remaining
off-diagonal elements to generate a lower level matrix. Fur-
ther, the non-transitory, computer readable medium can
include code configured to direct the processor to construct a
preconditioner by restricting the solution to a lower level
matrix.

BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of the present techniques are better under-
stood by referring to the following detailed description and
the attached drawings, in which:

FIG. 1 is a schematic view of a reservoir;

FIG. 2 is a top view of a reservoir showing a planar pro-
jection of a computational mesh over the reservoir;

FIG. 3 is a process flow diagram of a workflow for model-
ing a reservoir;

FIG. 4 is an illustration of a computation mesh, showing
the interconnections between cells;

FIG. 5 is a Jacobian matrix, generated from the computa-
tional mesh shown in FIG. 4, in which the off-diagonal ele-
ments correspond to interconnections between computa-
tional cells;

FIG. 6 is a process flow diagram presenting a method for
implementing a coarsening algorithm, in accordance with an
exemplary embodiment of the present technique;

FIG. 7 is a process flow diagram illustrating a method for
selecting a value for the threshold, o;
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FIG. 8 is a drawing of a computational mesh showing only
the scaled links between cells that may result after performing
a coarsening algorithm on the computational mesh 400 of
FIG. 4;

FIG. 9 shows a matrix B constructed from the computa-
tional mesh of FIG. 8;

FIG. 10 shows a sorted version of the matrix B from FIG.
9;

FIG. 11 is a new coarse grid matrix A;=B,, of FIG. 10, in
which B,, has been dropped;

FIG. 12 is adrawing of a computational mesh showing only
the scaled links between cells that may result after performing
a coarsening algorithm on the computational mesh of FIG. 8,
i.e., the links shown in FIG. 8 but missing in FIG. 12 are
dropped links;

FIG. 13 is the matrix B, created from computational mesh
of FIG. 12;

FIG. 14 shows the reordered matrix B, created from the
matrix of FIG. 13;

FIG. 15 shows an example of matrix A, obtained from
matrix B, after the diagonal matrix B,, has been dropped;

FIG. 16 is adrawing of a computational mesh showing only
the scaled links between cells that may result after performing
a coarsening algorithm on the computational mesh of FIG.
12;

FIG. 17 is the matrix B, created from computational mesh
of FIG. 16;

FIG. 18 shows the reordered matrix B.,;

FIG. 19 shows an example of matrix A; obtained from
matrix B, after dropping the diagonal elements B,,,;

FIG.20is an illustration of the creation of a preconditioner;

FIG. 21 is a process flow diagram of a method for con-
structing the preconditioner on a sequence of grids; and

FIG. 22 is a block diagram of an exemplary cluster com-
puting system that may be used in exemplary embodiments of
the present techniques.

DETAILED DESCRIPTION

In the following detailed description section, the specific
embodiments of the present techniques are described in con-
nection with preferred embodiments. However, to the extent
that the following description is specific to a particular
embodiment or a particular use of the present techniques, this
is intended to be for exemplary purposes only and simply
provides a description of the exemplary embodiments.
Accordingly, the present techniques are not limited to the
specific embodiments described below, but rather, such tech-
niques include all alternatives, modifications, and equivalents
falling within the true spirit and scope of the appended claims.

At the outset, and for ease of reference, certain terms used
in this application and their meanings as used in this context
are set forth. To the extent a term used herein is not defined
below, it should be given the broadest definition that persons
in the pertinent art have given that term as reflected in at least
one printed publication or issued patent. Further, the present
techniques are not limited by the usage of the terms shown
below, as all equivalents, synonyms, new developments, and
terms or techniques that serve the same or a similar purpose
are considered to be within the scope of the present claims.

“Coarsening” refers to reducing the number of cells in
simulation models by making the cells larger, for example,
representing a larger space in a reservoir. Coarsening is often
used to lower the computational costs by decreasing the num-
ber of cells in a geologic model prior to generating or running
simulation models.
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“Non-transitory, computer-readable medium” as used
herein refers to any tangible, non-transitory, storage medium
that provides instructions to a processor for execution. Such a
medium may include, but is not limited to, non-volatile media
and volatile media. Non-volatile media includes, for
example, NVRAM, or magnetic or optical disks. Volatile
media includes dynamic memory, such as main memory.
Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, a hard disk, an array of
hard disks, a magnetic tape, or any other magnetic medium,
magneto-optical medium, a CD-ROM, a holographic
medium, any other optical medium, a RAM, a PROM, and
EPROM, a FLASH-EPROM, a solid state medium like a
memory card, any other memory chip or cartridge, or any
other tangible medium from which a computer can read data
or instructions. When the computer-readable media is con-
figured as a database, it is to be understood that the database
may be any type of database, such as relational, hierarchical,
object-oriented, and/or the like.

“Exemplary” is used exclusively herein to mean “serving
as an example, instance, or illustration” Any embodiment
described herein as “exemplary” is not to be construed as
preferred or advantageous over other embodiments.

“Flow simulation” is defined as a numerical method of
simulating the transport of mass (typically fluids, such as oil,
water, and gas), energy, and momentum through a physical
system using a computer. The physical system includes a
three dimensional reservoir model, fluid properties, and the
numbers and locations of wells. The three-dimensional res-
ervoir model is represented by a computational mesh, which
has a number of computational cells representing the smallest
indivisible units in the simulation. As used herein, the terms
“computational cell” and “cell” are interchangeable. Flow
simulations also require a strategy (often called a well-man-
agement strategy) for controlling injection and production
rates. These strategies are typically used to maintain reservoir
pressure by replacing produced fluids with injected fluids (for
example, water, and/or gas). When a flow simulation cor-
rectly recreates a past reservoir performance, it is said to be
“history matched,” and a higher degree of confidence is
placed in its ability to predict the future fluid behavior in the
reservoir.

“Permeability” is the capacity of a rock to transmit fluids
through the interconnected pore spaces of the rock. Perme-
ability may be measured using Darcy’s Law: Q=(k AP A)/
(uL), wherein Q=flow rate (cm>/s), AP=pressure drop (atm)
across a cylinder having alength I (cm) and a cross-sectional
area A (cm?), p=fluid viscosity (cp), and k=permeability
(Darcy). The customary unit of measurement for permeabil-
ity is the millidarcy. The term “relatively permeable” is
defined, with respect to formations or portions thereof, as an
average permeability of 10 millidarcy or more (for example,
10 or 100 millidarcy). The term “relatively low permeability”
is defined, with respect to formations or portions thereof, as
an average permeability of less than about 10 millidarcy. An
impermeable layer generally has a permeability of less than
about 0.1 millidarcy.

“Pore volume” or “porosity” is defined as the ratio of the
volume of pore space to the total bulk volume of the material
expressed in percent. Porosity is a measure of the reservoir
rock’s storage capacity for fluids. Porosity is preferably deter-
mined from cores, sonic logs, density logs, neutron logs or
resistivity logs. Total or absolute porosity includes all the pore
spaces, whereas effective porosity includes only the intercon-
nected pores and corresponds to the pore volume available for
depletion.
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“Reservoir” or “reservoir formations” are typically pay
zones (for example, hydrocarbon-producing zones) that
include sandstone, limestone, chalk, coal and some types of
shale. Pay zones can vary in thickness from less than one foot
(0.3048 m) to hundreds of feet (hundreds of m). The perme-
ability of the reservoir formation provides the potential for
production.

“Reservoir properties” and “reservoir property values” are
defined as quantities representing physical attributes of rocks
containing reservoir fluids. The term “reservoir properties” as
used in this application includes both measurable and
descriptive attributes. Examples of measurable reservoir
property values include porosity, permeability, water satura-
tion, and fracture density. Examples of descriptive reservoir
property values include facies, lithology (for example, sand-
stone or carbonate), and environment-of-deposition (EOD).
Reservoir properties may be populated into a reservoir frame-
work to generate a reservoir model.

“Simulation model” refers to a specific mathematical rep-
resentation of a real hydrocarbon reservoir, which may be
considered a particular type of geologic model. Simulation
models are used to conduct numerical experiments (reservoir
simulations) regarding future performance of the field with
the goal of determining the most profitable operating strategy.
An engineer managing a hydrocarbon reservoir may create
many different simulation models, possibly with varying
degrees of complexity, in order to quantify the past perfor-
mance of the reservoir and predict its future performance.

“Transmissibility” refers to a volumetric flow rate between
two points at unit viscosity for a given pressure-drop. Trans-
missibility is a useful measure of connectivity. Transmissibil-
ity between any two compartments in a reservoir (fault blocks
or geologic zones), or between the well and the reservoir (or
particular geologic zones), or between injectors and produc-
ers, can all be useful for understanding connectivity in the
reservoir.

“Well” or “wellbore” includes cased, cased and cemented,
or open-hole wellbores, and may be any type of well, includ-
ing, but not limited to, a producing well, an experimental
well, an exploratory well, and the like. Wellbores may be
vertical, horizontal, any angle between vertical and horizon-
tal, deviated or non-deviated, and combinations thereof, for
example a vertical well with a non-vertical component. Well-
bores are typically drilled and then completed by positioning
a casing string within the wellbore. Conventionally, the cas-
ing string is cemented to the well face by circulating cement
into the annulus defined between the outer surface of the
casing string and the wellbore face. The casing string, once
embedded in cement within the well, is then perforated to
allow fluid communication between the inside and outside of
the tubulars across intervals of interest. The perforations
allow for the flow of treating chemicals (or substances) from
the inside of the casing string into the surrounding formations
in order to stimulate the production or injection of fluids.
Later, the perforations are used to receive the flow of hydro-
carbons from the formations so that they may be delivered
through the casing string to the surface, or to allow the con-
tinued injection of fluids for reservoir management or dis-
posal purposes.

Overview

The present techniques provide methods and systems for
simulating a property of at least one fluid in a fluid-containing
physical system, such as a reservoir. The physical system is
represented by a multiplicity of volumetric cells and a mul-
tiplicity of connections between cells on a computational
architecture using multiple computing nodes. Embodiments
may use a preconditioned iterative method, which may have
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less global communication between computing cores than
standard Krylov-type iterative techniques, such as gradient
minimal residual (GMRES), biconjugate gradient stabilized
(BiCGStab), and the like. In an exemplary embodiment, a
Chebyshev iteration method is used to model the physical
system. Based on the estimates of the spectrum boundaries,
i.e., the extreme Eigen values, this method does not need a
global exchange of information. In many cases the spectrum
boundaries can be obtained by local evaluations with very
small exchange of information between computing cores,
which need to be done once per the entire solve.

In embodiments, a multilevel (or multigrid) preconditioner
may be recursively constructed by recursively performing a
series of steps. First, the number of nonzero elements of a
matrix representing the physical system may be reduced
based on the strength of connections between them (e.g.,
using the transmissibilities between computational cells cal-
culated from the matrix values or the matrix values them-
selves as the measure of that strength). After the reduction of
connections, the reduction of unknowns can be applied,
resulting in a coarser matrix equation.

The methods can be formulated for both structured and
unstructured underlying grids. The methods of the present
techniques may be more clearly understood by examining a
reservoir simulation, as discussed in FIGS. 1-3.

FIG. 1 is a schematic view 100 of a reservoir 102. The
reservoir 102, such as an oil or natural gas reservoir, can be a
subsurface formation that may be accessed by drilling wells
104, 106, and 108 from the surface 110 through layers of
overburden 112. The reservoir 102 may have one or more
faults 114 that divide areas, for example, regions 116 and 118,
and which may either restrict or enhance the flow of hydro-
carbons. The wells 104, 106, and 108 may be deviated, such
as being directionally drilled to follow the reservoir 102.
Further, the wells can be branched to increase the amount of
hydrocarbon that may be drained from the reservoir, as shown
for wells 104 and 108. The wells 104, 106, and 108, can have
numerous areas with perforations 120 (indicated as dots next
to the wells) to allow hydrocarbons to flow from the reservoir
102 into the wells 104, 106, and 108 for removal to the
surface.

FIG. 2 is a top view of a reservoir showing a planar pro-
jection of a computational mesh 200 over the reservoir.
Although the computational mesh 200 is shown as a two
dimensional grid of computational cells (or blocks) 202 to
simplify the explanation of the problem, it should be under-
stood that the actual computational mesh 200 can be a three
dimension matrix of computational cells 202 that encom-
passes the reservoir. A computational cell 202 is a single two
or three-dimensional location within a simulation model that
represents a physical location in a reservoir. The computa-
tional cell 202 may have associated properties, such as poros-
ity or an oil content, which is assumed to be a single value
over the entire computational cell 202 and is assigned to the
center of the computational cell 202. Computational cells 202
may interact with adjacent computational cells 202, for
example, by having flux properties assigned to a shared bor-
der with the adjacent computational cells 202. For example,
the flux properties may include heat or mass transfer values.

The computational mesh 200 can be coarsened in areas that
may have less significant changes, for example, by combining
computational cells 202 that are not in proximity to a well or
other reservoir feature. Similarly, the computational mesh
200 may retain a fine mesh structure in the vicinity of wells or
other reservoir features, such as the first well 204, or other
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reservoir features, for example, a second well 206, a third well
208, a fault 210, or any other features that may show larger
changes than other areas.

The computational mesh 200 represents the simulation
model, and can be divided among computing units to
decrease the amount of time needed to provide a result for the
simulation. This procedure may be termed “parallelization.”
The parallelization of the simulation model is realized by
parallelizing the individual components at each time step. To
achieve efficient utilization of the parallel computing units
the simulation model can be distributed across the computing
units so that the computational load is evenly balanced and
the amount of inter-unit communication is minimized. This
division is performed by partitioning the simulation model,
i.e., assigning different computational cells 202 in the com-
putational mesh 200 to different computing units. Each com-
putational cell 202 may require a different approach to par-
allelization based on the numerical formulation, the actual
input data, the computational task, and user supplied options.

In the exemplary embodiment shown in FIG. 2, the com-
putational mesh 200 is partitioned between four computing
units, as indicated by the subdomains labeled I-IV. Although
four computing units are used in FIG. 2, any number of
computing units may be used in other embodiments, depend-
ing on the size ofthe simulation model and the number of near
well features. For example, a small simulation model may
provide results in a reasonable timeframe from a single com-
puting device, while a large simulation may use 10, 100,
1000, or even more computing units for the parallelization.

Further, while the borders between subdomains I-1V do not
cross near well regions or significant reservoir features, the
subdomains are not limited to contiguous areas, but may
include non-contiguous areas, which may be useful for bal-
ancing the load between the computing units. For example, as
illustrated in FIG. 2, subdomain I may be divided into two
regions. A first region 212 encompasses the near well region
for the first well 204, while a second region 214 encompasses
anumber of larger computational cells 202 that may have less
significant changes than the near well regions.

The separation of subdomains between processors allows a
lowering of the workload of any one processor, increasing the
speed of the simulation. However, information transfers and
communications between processors add an overhead cost
that may lower the efficiency of the simulation on any one
processor. For example, some types of simulation simplifica-
tions, such as Krylov iterations, may require the sharing of
global information between processing units, adding a sub-
stantial overhead cost. Exemplary embodiments of the
present techniques provide simulation simplification without
sharing information between processors.

Workflow for Modelling a Reservoir

FIG. 3 is a process flow diagram of a workflow 300 for
modelling a reservoir. Although the discretization (coarsen-
ing) and the level of implicitness (which state variables, such
as pressure or saturation, are treated implicitly or explicitly in
the formulation) of the solution process may vary, simulation
models generally perform in a similar fashion as workflow
300. A simulation model can begin at block 302 by parsing
user input data. The input data may include the problem
formulation, a geologic model that is discretized into grid
blocks with physical properties defined at each grid block,
including rock properties (such as permeability) and fluid
properties (such as transmissibility). At block 304, a well
management routine computes the current state of surface
facilities and wells from the governing equations. At block
306, the values from the well management routine are used
along with the value of state variables at each computational
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cell to construct a Jacobian matrix. The Jacobian matrix is the
matrix (or array) of all first order partial derivatives (with
respect to the state variables) of a vector valued function. In
reservoir simulation, the Jacobian details the change of the
governing partial differential equations with respect to the
state variables (pressure, saturation).

At block 308, the linear solver uses the Jacobian matrix to
generate updates for physical properties of interest, such as
pressure and saturation, among others. In embodiments of the
present techniques, the matrix may be simplified using the
methods described herein prior to solving the matrix to solve
for physical properties. At block 310, the calculated physical
properties are compared either to previously calculated prop-
erties or to measured properties, and, at block 312 a determi-
nation is made as to whether a desired accuracy has been
reached. In an exemplary embodiment, the determination is
made by determining that the calculated properties have not
significantly changed since the last iteration (which may indi-
cate convergence). For example, convergence may be indi-
cated if the currently calculated properties are within 0.01%,
0.1%, 1%, 10%, or more of the previously calculated proper-
ties. In other embodiments, the determination may be deter-
mining if the calculated properties are sufficiently close to
measured properties, for example, within 0.01%, 0.1%, 1%,
10%, or more. If the desired accuracy is not reached, process
flow returns to block 308 to perform another iteration of the
linear solver.

If at block 312, the desired accuracy has been reached,
process flow proceeds to block 314, at which results are
generated. The results may be stored in a data structure on a
non-transitory, computer-readable medium, such as a data-
base, for later presentation, or the results may be immediately
displayed or printed after generation. Atblock 316, the time is
incremented by a desired time step, for example, a day, a
week, a month, a year, five years, ten years or more, depend-
ing, at least in part, on the desired length of time for the
simulation. At block 318, the new time is compared to the
length desired for the simulation. If the simulation has
reached the desired length of time, the simulation ends at
block 320. If the time has not reached the desired length, flow
returns to block 304 to continue with the next increment.

The parallelization of the processes may be considered to
fall into two main types, task based parallelization, and grid
based parallelization. For task-based parallelization, a calcu-
lation is divided into sub tasks that are run independently in
parallel. For example, in the well management task at block
304, a set of operations may be computed on each of a set of
wells that can be performed independently of one another.
Therefore, each computing unit may execute the operations
independently of the other computing units unit.

Grid based parallelization may be performed at a number
of'points in the processes, such as in the Jacobian construction
and/or the property calculations discussed with respect to
blocks 306 and 310. In the computational process of con-
structing the Jacobian, rock and fluid properties with corre-
sponding derivatives are calculated at each computational
cell. This type of parallelization is used for computations that
do not depend on the computational cells being adjacent or
require global communication for the computations.

Vapor-liquid equilibrium (VLE) fluid property computa-
tions may be considered in an example of parallelization. If a
simulation model uses a black oil fluid characterization for
VLE computations, the amount of computational work
required for a flash calculation is roughly proportional to the
number of computational cells due to the linear nature of the
black oil VLE computations. However, if a compositional
fluid model is chosen, the amount of computational work for
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the flash calculation within a single computational cell
depends on the cell’s position in the phase state space. Hence,
the amount of computational work may vary sharply from cell
to cell.

Depending on the level of implicitness used on different
time steps of the reservoir simulation process, there are two
different versions of the solvers that may be used. For an
implicit pressure-explicit saturation (IMPES) scheme, only
the pressure unknowns may be simultaneously solved. For
fully implicit schemes or adaptive implicit schemes, all pri-
mary unknowns, including both pressure and saturations, can
be implicitly solved. A constrained pressure residual (CPR)
method can be used to solve the equations for the unknowns.
During each iteration of the CPR method, the pressure
unknowns can be solved implicitly and then other unknowns,
such as saturations, can be updated using a relaxation tech-
nique. A number of relaxation techniques may be used, such
as Gauss-Seudel or successive over relaxation (SOR) meth-
ods. As most of the relaxation techniques can easily be par-
allelized, the major task is to create efficient and parallel
methods for solving the pressure equation. The techniques
may be further explored by examining a computational mesh,
as discussed with respect to the following figures.

FIG. 4 is an illustration of a portion of a computation mesh
400, showing the interconnections between computational
cells. In the computational mesh, each of the computational
cells 402 is labeled with a number 1-13. The number of cells
in the computational mesh (or reservoir model) may be
denoted as N. As noted above, the center 404 of each of the
computational cells 402 may be associated with various prop-
erties, such as saturation, pressure, temperature, and the like.
The dotted lines represent an interconnection 406, or links,
between two computational cells 402, which may be associ-
ated with various flux parameters. For example, the intercon-
nection 406 between cell 8 and cell 7 may be associated with
a flow between the computational cells 402, such as from a
higher-pressure cell to a lower-pressure cell.

The pressure equation for a reservoir simulation problem
can approximated via a finite volume method resulting in the
algebraic system shown in Eqn. 1.

Ap=f
In Eqn. 1, p and f represent vectors of size N, and A is an

NxN-matrix such that, for the pressure p, in the node i, the
algebraic equation may be as shown in Eqn. 2.

Eqn. 1

Z a(pi —pj)+cipi = f; Egn. 2

JEAd]()

In Eqn. 2, Adj(i) represents the set of the computational cells
adjacent to the computational cell, and i, a,,, and c, represent
nonnegative coefficients. Coefficients a,, represent transmis-
sibility and coefficients c, represent time derivative which are
proportional to the reciprocal of the time step. The term, £,
represents the element of the right-hand-side, which may be
called the source term. As an example, in the computational
mesh 400, cell 7 will have cells 2, 3, 6, 8, 10, and 11 for
neighbors. Accordingly, the set Adj(7) represents the set of
those nodes.

A matrix A generated by the finite volume method can be
represented be the formula shown in Eqn. 3.

A=M+D Eqn. 3

In Eqn. 3, the matrix M corresponds to the connections
between the pressure variables in adjacent computational
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cells and matrix D is a diagonal matrix. If N; denotes the
assembling Nx2-matrix, then matrix M can be represented as
shown in Eqn. 4.

N Eqgn. 4

1 -1
T
N;ja;j(_l 1]N‘-j
=1 Adj()

M=

InN,, all elements are zeroes except for the i-th element of the
first column and j-th element of the second column, which are
equal to 1. It may also be noted that a matrix D can also be
represented in a similar form, as shown in Eqn. 5.

Eqgn. 5
D=

=1 Adj())

In Egn. 5, all d;; are nonnegative and

Z d;j:(,‘;.

Adji)

From the definitions provided in Eqns. 3-5, the matrix A can
be presented in the assembled form as shown in Eqn. 6.

N Eqgn. 6

1 -1 d; 0O
]+ N

Ny [af( o1l
=L AdiG)

An example of such matrix corresponding to the grid from

FIG. 4 is shown in FIG. 5.

FIG. 5 is a Jacobian matrix 500, generated from the com-
putational mesh shown in FIG. 4, in which the off-diagonal
elements correspond to interconnections between computa-
tional cells. For each local matrix, for example, as shown with
respect to Eqn. 7, a local preconditioning matrix may be
defined, as shown in Eqn. 8. As used herein, a local matrix is
the matrix corresponding to a single interconnection.

M5 4]
(5 o)

Further, it can be shown that for any two-dimensional vector
x the inequalities presented in Eqns. 9 and 10 hold true.

A=

1 -1 Eqn. 7

A ”‘7(—1 1

Eqgn. 8

1
Bij:ﬁ'aij(_l L

Eqn. 9

dij + dj;
(Bjjx, x) < (Ayx, x) < (1 + P a;j](B;jx, x),
i ji
it B=0

1 Egn. 10
(Bjx, x) = (Ajx, x) < E(B;jx, X),

it 0
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The first condition (f=0), shown in Eqn. 9, corresponds to
a “dropped link.” The second condition ($=0), shown in Eqn.
10, corresponds to a “scaled link.” Accordingly, for the matrix
A defined by Eqn. 6, a preconditioning matrix may be defined
as shown in Eqn. 11.

N Egn. 11

_1]+ dy 0 N‘_T

1
BzZZN"[ﬁ”“"’(—l 1
=1 Adj(i)

Using the inequalities for local matrices shown in FIG. 12,
it can be proven that for any N-dimensional vector u that the
inequalities shown in Eqn. 13 always hold true.

(B )= (45 x)=1y(By)

v

Eqn. 12

(Bu,u)=(Au,u)=y(Bu,u) Eqn. 13

In Eqns. 12 and 13, it may be assumed that
Y = maxyij,
if

indicating that matrices A and B are spectrally equivalent.
The usual notation to indicate spectral equivalence is shown
in Eqn. 14.

B=A=yB Eqn. 14

The formulas discussed above may be used to generate a
coarsening algorithm, as discussed with respect to FIG. 6.
Coarsening Algorithm

FIG. 6 is a process flow diagram presenting a method 600
for implementing a coarsening algorithm. The method 600
begins at block 602, with the choice of a threshold. The
threshold, represented by o, can be any real number greater
than 1. For example, one method that may be used to select a
threshold is discussed with respect to FIG. 7. Atblock 604, for
any interconnection ij between adjacent cells, i and j, the
interconnection weighting is compared to the threshold. The
interconnection weighting and comparison may be per-
formed using the formula

(1+

wherein d;; and d;; represent the diagonal elements of the
computational cells 1 and j in the matrix. If the interconnec-
tion weighting is equal to or less than the threshold, the
interconnection is set to zero, i.e., 3,0, as indicated at block
606. In this case, each of the corresponding off-diagonal
elements in the matrix is set to zero as well. If the intercon-
nection weighting is greater than the threshold, at block 608
the interconnection may be scaled, for example, 3, =1/c.

At block 610, a determination is made as to whether all
interconnections have been examined. If not, process flow
returns to block 604 to examine the next interconnection. If
s0, process flow ends at block 612. Once the method 600 is
completed, the relationship between Matrices A and B may be
as shown in Eqn. 15.

dy +dj; ]

¥ S

——aij| =0,
dyd;

B=A=oB Eqn. 15

It should be noted that the value of the threshold, o, controls
the sparsity of matrix B. The larger the threshold, the sparser
the matrix B becomes. Depending on the value chosen for the
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threshold, o, some of the rows of matrix B may not have any
non-zero off-diagonal elements. This indicates that all inter-
connections, or links, to neighboring computational cells
from the computational cells 402 (FIG. 4) that correspond to
those rows have been dropped. One method for selecting of
the value of the threshold is discussed with respect to FIG. 7.

FIG. 7 is a process flow diagram illustrating a method 700
for selecting a value for the threshold, o. It should be noted
that this is not the only method 700 that may be used, as any
number of other methods, including experience, may be used
to select appropriate threshold values. The method 700 begins
at block 702 by calculating a value, b,, for each cell 402 (FIG.
4). The term, b,, represents the largest interconnection to
another cell for a particular cell 402 in the computational
mesh 400. For all cellsi=1, .. ., N find values b, according to
Eqn. 16.

dij +dj; a--] Eqgn. 16
ij

b; = max (1 + —
YT jeAdi) dyd;;

At block 704, the extreme values of b,,
.8, byin = mind; and by, = maxb;,

are identified.

At block 706, o is chosen so thatb,,,,<0<b,, ... For example,
o may be chosen using the formula shown in Eqn. 17.

1 Egn. 17
o= z(bmin + Do)

Once the threshold function has selected, it may be imposed
on the matrix to increase the sparsity of the matrix, for
example, by dropping weaker connections between cells 402,
decreasing the number of connections between cells 402.

FIG. 8 is a drawing of a computational mesh 800 showing
only the scaled links between cells with other links being
dropped that may result after performing a coarsening algo-
rithm on the computational mesh 400 of FIG. 4. The corre-
sponding example of a matrix B, constructed by the coarsen-
ing algorithm is shown in FIG. 9.

FIG. 9 shows a matrix 900, referred to herein as matrix B,
constructed from the computational mesh 800 of FIG. 8. The
cells of the computational domain can be partitioned into two
groups in accordance with the sparsity structure of matrix B,.
This is discussed in further detail with respect to FIG. 10.

FIG. 10 shows a matrix 1000, which is a sorted version of
the matrix B, from FIG. 9. Two groups of cells are apparent.
A first group of cells 1002 includes all of the cells that have
connections with other cells. These cells correspond to those
rows of the matrix B, that have nonzero off-diagonal ele-
ments. A second group of cells 1004 has all of the cells with
all connections between cells dropped. These cells corre-
spond to those rows of matrix B, that do not have off-diagonal
elements. Thus, after the partition of the cells into the groups
1002 and 1004, the matrix B, can be represented in a 2x2-
block form, as shown in Eqn. 18.
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Egn. 18

™
B

In Eqn. 18, the block B, is a diagonal matrix. After generat-
ing the partition shown in Eqn. 18, matrix B, 1002 from FIG.
10 may be defined as a new coarse grid matrix A,=B,,, as
shown in FIG. 11.

FIG. 11 is a new coarse grid matrix 1100, which is a new
coarse grid matrix A~=B, ; of FIG. 10, in which B,, has been
dropped. It can be noted that the matrix A, has the same
properties as the original matrix. In other words, it may be
represented in the form shown in Eqn. 6, and the same pro-
cedure for constructing a preconditioner B, described above,
can be applied to A,. Thus, it is possible to apply the precon-
ditioner (coarsening procedure) recursively. Accordingly, for
any given integer t>0 it is possible to construct a sequence of
matrices as shown in Eqn. 19.

A=A4—>By—4,—B,— ... =B, —4,~B, Eqn. 19

#+1

The sequence of matrices satisfies a number of properties.
First, each coarsened matrix, B,, k=1, . . . , t-1, can be
represented in the 2x2 block form shown in Eqn. 20.

Egn. 20

[Bk,ll
Bk =

By }

Further, each B, ;, can be defined as the new matrix A, ;.
Further, for each k=1, . . ., t, the positive constants o, and {3,
are known such that O<o, <[}, and the condition in Eqn. 21 is
satisfied.

o Br=A1=Bibs

An example of the application of the coarsening algorithm
above may be shown in FIGS. 8-19. As discussed above, FIG.
8 shows only scaled links between the cells, which may be
used to construct the matrix By, shown in FIGS. 9 and 10.
FIG. 10 shows the reordered matrix B, in accordance with
Eqn. 18. FIG. 11 shows the matrix A, obtained from matrix
B

Eqn. 21

o

FIG. 12 is a drawing of a computational mesh 1200 show-
ing only the scaled links between cells with all other links
being dropped that may result after performing a second
iteration of a coarsening algorithm on the computational
mesh 800 of FIG. 8. The result may be used to construct
matrix B, shown in FIG. 13.

FIG. 13 is the matrix B, 1300 created from computational
mesh of FIG. 12. The matrix B; may be reordered using Eqn.
18, as discussed with respect to FIG. 14.

FIG. 14 shows the reordered matrix B, 1400 created from
the matrix of FIG. 13. As discussed above, the cells that do not
interact with other cells, e.g., that have no non-zero oft-
diagonal elements, may be dropped and a new matrix A, may
be defined from the resulting matrix.

FIG. 15 shows an example 1500 of matrix A, obtained
from matrix B, after the diagonal matrix B,, has been
dropped. As mentioned above, the coarsening procedure may
be iterated a number of times to further simplify the calcula-
tions.

FIG. 16 is a drawing of a computational mesh 1600 show-
ing only the scaled links between cells with all other links
being dropped that may result after performing another itera-
tion of a coarsening algorithm on the computational mesh
1200 of FIG. 12. This computational mesh may be used to
construct the matrix B,.
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FIG. 17 is the matrix B, 1700 created from computational
mesh of FIG. 16. As described above, the matrix B, may also
be reordered using Eqn. 18.

FIG. 18 shows the reordered matrix B, 1800. As described
above, the portion of the matrix B, , 1802 that represents cells
that are not connected to other cells may be dropped. The
remaining portion 1804 may be used to create another starting
matrix A;.

FIG. 19 shows an example of matrix A; 1900 obtained
from matrix B, after dropping the diagonal elements B,,. The
comparison between this matrix A, and that shown for A, in
FIG. 5 illustrates the simplification that may be obtained
using the coarsening algorithm. Using the sequence of matri-
ces as illustrated in Eqn. 19 it is possible to construct the
preconditioner B as shown in FIG. 20.

Restricting the Solution to a Coarser Grid to Create the Pre-
conditioner

FIG. 20 is an illustration 2000 of the creation of a precon-
ditioner. As shown in FIG. 20, the coarsening procedure may
be iteratively performed as indicated by reference number
2002. Once the coarsening procedure is finished, the solution
may be iteratively restricted to a coarser grid, as indicated by
reference number 2004.

FIG. 21 is a process flow diagram of a method 2100 for
constructing the preconditioner on a sequence of grids. The
method 2100 starts at block 2102 at the coarsest level k=t (for
example, level 3 in FIG. 20) and defines Et:Bt. From Eqn. 21,
the relationship in Eqn. 22 may be derived.

aBs=d4z=bB, Eqn. 22
In Eqn. 22, a~=a, and b,=f,. At block 2104, the matrix ]§k is
constructed for each level k=t1, . . ., 0. This is performed by

choosing an integer s,>0, and constructing the matrix B, as
shown in Eqn. 23.

N Ay Egn. 23

By

By

In Eqn. 23, the term Ak+ , can be calculated using the formula
shown in Eqn. 24.

Sk o -1 Eqn. 24
Aps1 = [[1 - 1_[ (1— Tk+1,jBk+1Ak+l) A/?il]

J=1

The parameters t,,, , j=1. . . . , 5;, are chosen in such a way
that the polynomial shown in Eqn. 25 is the least deviating
from zero polynomial on the segment [a,, ,, b.,,].

Sk Eqn. 25
Per1(@) = 1_[ (1 = 741,52

J=1

The polynomial with such property is given in terms of Che-
byshev polynomials.

The matrix B=B, constructed using Eqns. 22, 23, and 24 is
defined to be a multilevel preconditioner for matrix A. It can
be noted that for given vector u the vector v=A,,, 'u can be
computed by the iterative procedure shown in Eqn. 26.
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vo=0 Eqn. 26
a1

Vi = Vit = Teel, jiBia 1 (Agr1vimr — ),

j=1 . s

V=g,

The theory of Chebyshev methods implies (see Eqn. 22) that
the eigenvalues of the matrix A,,,"'A,,, belong to the seg-
ment shown in Eqn. 27.

(-gl) (+gk)’ Eqn. 27

2%
L+ g

25t
L+g.4

In Eqn. 27, q,,=(Vomi/ar - 1/(Vb 78, +1). It can then
be shown that the eigenvalues of the matrix B, , =4, | belong
to the segment shown in Eqn. 28.

5} 2
(L+gk) Eqn. 28

25
L+ge

s, 2
(1-g&0)

lag, b ] = o
L+gh

FIG. 20 shows the workflow of application of the generation
of the preconditioner for the sequence of grids shown in
FIGS.4,8,12,16, and the matrices A, and B,, shown in FIGS.
5,10,11, 14, 15,17, and 19.

It can be noted that the goal of classical geometrical or
algebraic multigrid methods is to quickly reduce the dimen-
sion of the matrix. The construction of the proposed precon-
ditioner, discussed herein, differs from this approach in that
the reduction of the matrix dimension is not as important as
the reduction of the number of nonzero elements of the
matrix. The present method depends on Chebyshev iterations
between the levels. Therefore, the main computational cost of
solving the system of linear equations with the proposed
preconditioner is in multiplication of the level matrices by
vectors. This cost is linear with respect to the number of
non-zero entries in the matrices A,.

Exemplary Cluster Computing System

FIG. 22 is a block diagram of a cluster computing system
2200 that may be used in exemplary embodiments of the
present techniques. The cluster computing system 2200 illus-
trated has four computing units 2202, each of which may
perform calculations for part of the simulation model. How-
ever, one of ordinary skill in the art will recognize that the
present techniques are not limited to this configuration, as any
number of computing configurations may be selected. For
example, a small simulation model may be run on a single
computing unit 2202, such as a workstation, while a large
simulation model may be run on a cluster computing system
2200 having 10, 100, 1000, or even more computing units
2202. In an exemplary embodiment, each of the computing
units 2202 will run the simulation for a single subdomain.
However, allocation of the computing units 2202 may be
performed in any number of ways. For example, multiple
subdomains may be allocated to a single computing unit 2202
or multiple computing units 2202 may be assigned to a single
subdomain, depending on the computational load on each
computing unit 2202.

The present techniques do not involve computation of
inner products during Chebyshev iterations. Accordingly,
when implemented on a parallel computing architecture, the
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present techniques do not involve global communications and
do not require any barriers, e.g., synchronization points in the
computational workflow when a computing unit (processor)
must stop and cannot proceed until all other computing units
(processors) reach this barrier. The only communications
between the processing units are neighbor-to-neighbor com-
munications for matrix multiplication. Thus, the method has
better scalability property then classical Krylov-type iterative
methods used in reservoir simulations (like GMRES, BiCG-
Stab, and the like). However, the present techniques may also
be used within a framework of classical Krylov-type iterative
methods like GMRES, BiCGStab, and the like.

The cluster computing system 2200 may be accessed from
one or more client systems 2204 over a network 2206, for
example, through a high-speed network interface 2208. The
network 2206 may be a local area network (LAN), awide area
network (WAN), or the Internet. Each of the client systems
2204 may have tangible, computer readable memory 2210 for
the storage of operating code and programs, including ran-
dom access memory (RAM) and read only memory (ROM).
The operating code and programs may include the code used
to implement all or portions of the techniques described
herein, for example, the methods discussed with respect to
FIGS. 6, 7, and 21. The client systems 2204 can also have
other tangible, computer readable media, such as storage
systems 2212. The storage systems 2212 may include one or
more hard drives, one or more optical drives, one or more
flash drives, any combinations of these units, or any other
suitable storage device. The storage systems 2212 may be
used for the storage of code, models, data, and other infor-
mation used for implementing the methods described herein.

The high-speed network interface 2208 may be coupled to
one or more communications busses in the cluster computing
system 2200, such as a communications bus 2214. The com-
munication bus 2214 may be used to communicate instruc-
tions and data from the high-speed network interface 2208 to
a cluster storage system 2216 and to each of the computing
units 2202 in the cluster computing system 2200. The com-
munications bus 2214 may also be used for communications
among computing units 2202 and the storage array 2216. In
addition to the communications bus 2214, a high-speed bus
2218 can be present to increase the communications rate
between the computing units 2202 and/or the cluster storage
system 2216.

The cluster storage system 2216 can have one or more
tangible, computer readable media devices, such as storage
arrays 2220 for the storage of data, visual representations,
results, code, or other information, for example, to implement
all or portions of the techniques described herein, such as the
methods discussed with respect to FIGS. 6, 7, and 21. The
storage arrays 2220 may include any combinations of hard
drives, optical drives, flash drives, holographic storage arrays,
or any other suitable devices.

Each of the computing units 2202 can have a processor
2222 and associated non-transitory, computer readable
media, such as memory 2224 and storage 2226. The memory
2224 may include ROM and/or RAM used to store code, for
example, used to direct the processor 2222, for example, to
implement all or portions of the techniques described herein,
such as the methods discussed with respect to FIGS. 6, 7, and
21. The storage 2226 may include one or more hard drives,
one or more optical drives, one or more flash drives, or any
combinations thereof. The storage 2226 may be used to pro-
vide storage for intermediate results, data, images, or code
associated with operations, including code used to implement
all or portions of the techniques described herein, such as the
methods discussed with respect to FIGS. 6, 7, and 21.



US 9,418,180 B2

23

The present techniques are not limited to the architecture of
the cluster computer system 2200 illustrated in FIG. 22. For
example, any suitable processor-based device may be utilized
for implementing all or any portion of embodiments of the
present techniques, including without limitation personal
computers, laptop computers, computer workstations, GPUs,
mobile devices, and multi-processor servers or workstations
with (or without) shared memory. Moreover, embodiments
may be implemented on application specific integrated cir-
cuits (ASICs) or very large scale integrated (VLSI) circuits.
In fact, persons of ordinary skill in the art may utilize any
number of suitable structures capable of executing logical
operations according to the embodiments.

While the present techniques may be susceptible to various
modifications and alternative forms, the exemplary embodi-
ments discussed above have been shown only by way of
example. However, it should again be understood that the
present techniques are not intended to be limited to the par-
ticular embodiments disclosed herein. Indeed, the present
techniques include all alternatives, modifications, and
equivalents falling within the true spirit and scope of the
appended claims.

What is claimed is:

1. A method of performing a parallel reservoir simulation,
comprising:

generating a distributed data representation in a computer

storage system, wherein the data representation com-

prises at least one interconnection weight that represents

the magnitude of an interconnection between each of a

plurality of computational cells in a computational

mesh, and wherein the data representation comprises a

Jacobian matrix;

on a first processor, determining a first threshold value,
wherein determining the first threshold value comprises:
calculating a maximum interconnection weight for
interconnections of each of a first portion of the plu-
rality of computational cells to all adjoining compu-
tational cells;
identifying the largest value of the maximum intercon-
nection weight for all of the first portion of the plu-
rality of computational cells;
identifying the smallest value of the maximum intercon-
nection weights for all of the first portion of the plu-
rality of computational cells; and
selecting the first threshold value to lie between the
largest value and the smallest value,
on a second processor, determining a second threshold
value, wherein determining the second threshold value
comprises:
calculating a maximum interconnection weight for
interconnections of each of a second portion of the
plurality of computational cells to all adjoining com-
putational cells;
identifying the largest value of the maximum intercon-
nection weight for all of the second portion of the
plurality of computational cells;
identifying the smallest value of the maximum intercon-
nection weights for all of the second portion of the
plurality of computational cells; and
selecting the second threshold value to lie between the
largest value and the smallest value,
selecting a final threshold value based at least in part on the
first threshold value and the second threshold value;

comparing the final threshold value to each interconnec-
tion weight wherein comparing the final threshold value
to each interconnection weight comprises using the for-
mula
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wherein d,; and d, represent the diagonal elements of the
computational cells i and j in the Jacobian matrix, wherein o
represents the final threshold value, and wherein a,; represents
transmissibility, and wherein comparing the final threshold
value to each interconnection weight does not involve global
communications for this iteration or any subsequent iteration;
and

setting any interconnection weight that is equal to or less

than the final threshold value to zero.

2. The method of claim 1, wherein the first threshold value
is an average of the largest value and the smallest value of the
maximum interconnection weight for all of the first portion of
the plurality of computational cells, wherein the second
threshold value is an average of the largest value and the
smallest value of the maximum interconnection weight for all
of the second portion of the plurality of computational cells,
or both.

3. The method of claim 1, further comprising generating a
lower level computational mesh in the storage system by
eliminating any one of the plurality of computational cells
from the computational mesh that has no interconnections to
other computational cells.

4. The method of claim 3, further comprising generating a
sequence of lower level computational meshes in the storage
system by iteratively:

generating a third threshold value for an iteratively lower

level computational mesh to lie between the largest
value and the smallest value;

comparing the third threshold value to each interconnec-

tion weight and setting any interconnection weight that
is equal to or less than the third threshold value to zero;
and

eliminating any computational cell from the computational

mesh that has no interconnections to other computa-
tional cells to create a next lower level computational
mesh.

5. The method of claim 4, further comprising:

generating a preconditioner that restricts a solution to a

lowest level computational mesh; and, iteratively,

generating a preconditioner that restricts the solution to a

next higher computational mesh until a highest level
computational mesh is reached.

6. The method of claim 5, comprising using a precondi-
tioner in a Krylov-type iterative method to perform a reservoir
simulation.

7.The method of claim 6, wherein the Krylov-type iterative
method comprises gradient minimal residual (GMRES) or
biconjugate gradient stabilized (BiCGStab).

8. A method for managing hydrocarbon production from a
reservoir, comprising:

using a parallel reservoir simulation comprising:

generating a distributed data representation in a com-
puter storage system, wherein the data representation
comprises at least one interconnection weight that
represents the magnitude of an interconnection
between each of a plurality of computational cells in a
computational mesh;

on a first processor, determining a first threshold value,
wherein determining the first threshold value com-
prises:
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calculating a maximum interconnection weight for
interconnections of each of a first portion of the
plurality of computational cells to all adjoining
computational cells;
identifying the largest value of the maximum inter-
connection weight for all of the first portion of the
plurality of computational cells;
identifying the smallest value of the maximum inter-
connection weights for all of the first portion of the
plurality of computational cells; and
selecting the first threshold value to lie between the
largest value and the smallest value,
on a second processor, determining a second threshold
value, wherein determining the second threshold
value comprises:
calculating a maximum interconnection weight for
interconnections of each of'a second portion of the
plurality of computational cells to all adjoining
computational cells;
identifying the largest value of the maximum inter-
connection weight for all of the second portion of
the plurality of computational cells;
identifying the smallest value of the maximum inter-
connection weights for all of the second portion of
the plurality of computational cells; and
selecting the second threshold value to lie between the
largest value and the smallest value,
selecting a final threshold value based at least in part on
the first threshold value and the second threshold
value;
comparing the final threshold value to each interconnec-
tion weight, wherein comparing the final threshold
value to each interconnection weight does not involve
global communications for this iteration or any sub-
sequent iteration; and
setting any interconnection weight that is equal to or less
than the final threshold value to zero, wherein the data
representation comprises a Jacobian matrix in which
each diagonal element represents one of the plurality
of computational cells in the computational mesh, and
the method further comprises:
generating the interconnection weights between each
of the plurality of computational cells from oft-
diagonal elements in the Jacobian matrix;
comparing the final threshold value to each intercon-
nection weight, and, for each of the plurality of
computational cells that have an interconnection
weight equal to or less than the final threshold
value, setting the off-diagonal elements to zero;
and
eliminating any rows in the Jacobian matrix that have
no remaining off-diagonal elements to generate a
lower level Jacobian matrix; and
identifying new locations for production wells or injection
wells based, at least in part, upon a result from the
reservoir simulation; or
determining whether to convert a production well into an
injection well, convert an injection well into a produc-
tion well, or any combinations thereof, based, at least in
part, on a result from the reservoir simulation.
9. The method of claim 4, further comprising:
iterating to create one or more additional lower level of
matrices, by:
determining a third threshold value to lie between the
largest value and the smallest value;
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generating one or more second interconnection weights
from the off-diagonal elements for each computa-
tional cell in the lower level Jacobian matrix;

comparing the third threshold value to each second inter-
connection weight, and, for each computational cell
in the lower level Jacobian matrix that has an inter-
connection weight equal to or less than the third
threshold value, setting the off-diagonal elements to
zero; and

eliminating any rows in the lower level Jacobian matrix
that have no remaining off-diagonal elements to gen-
erate a second lower level Jacobian matrix.

10. The method of claim 9, further comprising constructing
a preconditioner by restricting the solution to the second
lower level Jacobian matrix.

11. The method of claim 9, wherein the second lower level
Jacobian matrix is a lowest level Jacobian matrix, wherein the
Jacobian matrix is a highest level Jacobian matrix, and
wherein the lower level Jacobian matrix is between the lowest
level Jacobian matrix and the highest level Jacobian matrix,
comprising, starting from a lowest level Jacobian matrix and
proceeding to a highest level Jacobian matrix, constructing a
preconditioner by iteratively restricting the solution to each
higher level Jacobian matrix.

12. A method for managing hydrocarbon production from
a reservoir, comprising:

simplifying a computational mesh by:

generating a distributed data representation of the compu-

tational mesh in a storage system, wherein the data rep-
resentation comprises an interconnection weight that
represents the magnitude of an interconnection between
each of a plurality of computational cells in the compu-
tational mesh;

on a first processor, determining a first threshold value,

wherein determining the first threshold value comprises:

calculating a maximum interconnection weight for
interconnections of each of a first portion of the plu-
rality of computational cells to all adjoining compu-
tational cells;

identifying the largest value of the maximum intercon-
nection weight for all of the first portion of the plu-
rality of computational cells;

identifying the smallest value of the maximum intercon-
nection weights for all of the first portion of the plu-
rality of computational cells; and

selecting the first threshold value to lie between the
largest value and the smallest value,

on a second processor, determining a second threshold

value, wherein determining the second threshold value

comprises:

calculating a maximum interconnection weight for
interconnections of each of a second portion of the
plurality of computational cells to all adjoining com-
putational cells;

identifying the largest value of the maximum intercon-
nection weight for all of the second portion of the
plurality of computational cells;

identifying the smallest value of the maximum intercon-
nection weights for all of the second portion of the
plurality of computational cells; and

selecting the second threshold value to lie between the
largest value and the smallest value;

selecting a final threshold value based at least in part on the

first threshold value and the second threshold value;
comparing the final threshold value to each interconnec-

tion weight and setting any interconnection weight that

is equal to or less than the final threshold value to zero,
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wherein comparing the final threshold value to each
interconnection weight comprises using the formula

(1+

wherein d;; and d;; represent the diagonal elements of the
computational cells i and j in a Jacobian matrix, wherein o
represents the final threshold value, and wherein a,; represents
transmissibility, and wherein comparing the final threshold
value to each interconnection weight does not involve global
communications for this iteration or any subsequent iteration;
eliminating any of the plurality of computational cells from
the computational mesh that has no interconnections to
other computational cells to create a lower level compu-
tational mesh; and

generating a preconditioner by restricting a solution to the

lower level computational mesh; and

simulating a hydrocarbon reservoir using the precondi-

tioner.

13. The method of claim 12, further comprising:

generating a sequence of lower level computational

meshes in the storage system by iteratively:

generating a third threshold value for an iteratively lower
level computational mesh to lie between a largest
interconnection weight value and a smallest intercon-
nection weight value for the computational cells in the
first lower level computational mesh;

comparing the third threshold valueto each interconnec-
tion weight and setting any interconnection weight
that is equal to or less than the third threshold value to
zero; and

eliminating any computational cell from the iteratively
lower level computational mesh that has no intercon-
nections to other computational cells to create a next
lower level computational mesh; and

generating a preconditioner that restricts a solution to a

lowest level computational mesh; and

iteratively generating a preconditioner that restricts a solu-

tion to a next higher computational mesh in the sequence
until a highest level computational mesh in the sequence
is reached.

14. The method of claim 12, further comprising identifying
new locations for production wells or injection wells based, at
least in part, upon a result from the simulation of the hydro-
carbon reservoir.

15. The method of claim 12, further comprising determin-
ing whether to convert a production well into an injection
well, convert an injection well into a production well, or any
combinations thereof, based, at least in part, on a result from
the simulation of the hydrocarbon reservoir.

16. A non-transitory, computer readable medium, compris-
ing code configured to direct a processor to:

generate a distributed data representation in a computer

storage system, wherein the data representation com-
prises an interconnection weight that represents the
magnitude of an interconnection between each of a plu-
rality of computational cells in a computational mesh;
on a first processor, determine a first threshold value,
wherein determining the first threshold value comprises:
calculating a maximum interconnection weight for
interconnection of each of a first portion of the plu-
rality of computational cells to all adjoining compu-
tational cells;

dy +dj; ]
i S
—a| =0,
dydy;
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identifying the largest value of the maximum intercon-
nection weight for all of the first portion of the plu-
rality of computational cells;
identifying the smallest value of the maximum intercon-
5 nection weight for all of the first portion of the plu-
rality of computational cells; and
selecting the first threshold value to lie between the
largest value and the smallest value,
on a second processor, determine a second threshold value,
wherein determining the second threshold value com-
prises:
calculating a maximum interconnection weight for
interconnections of each of a second portion of the
plurality of computational cells to all adjoining com-
putational cells;
identifying the largest value of the maximum intercon-
nection weight for all of the second portion of the
plurality of computational cells;
identifying the smallest value of the maximum intercon-
nection weights for all of the second portion of the
plurality of computational cells; and
selecting the second threshold value to lie between the
largest value and the smallest value,
select a final threshold value based at least in part on the
first threshold value and the second threshold value;
compare the final threshold value to each interconnection
weight, wherein the data representation comprises a
matrix, wherein comparing the final threshold value to
each interconnection weight comprises using the for-
mula
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wherein d;; and d;; represent the diagonal elements of the

computational cells i and j in the matrix, wherein o represents

the final threshold value, and wherein a,; represents transmis-

sibility, and wherein comparing the final threshold value to

each interconnection weight does not involve global commu-

nications for this iteration or any subsequent iteration; and
set any interconnection weight that is equal to or less than

the final threshold value to zero.
17. The non-transitory, computer readable medium of
claim 16, further comprising:
a matrix in which each diagonal element represents one of
the plurality of computational cells in the computational
mesh; and
code configured to direct the processor to:
generate the interconnection weights between each of
the plurality of computational cells from off-diagonal
elements in the matrix;

compare the final threshold value to each interconnec-
tion weight, and for each of the plurality of computa-
tional cells that have an interconnection weight equal
to or less than the final threshold value, setting the
off-diagonal elements to zero; and

eliminate any rows in the matrix that have no remaining
off-diagonal elements to generate a lower level
matrix.

18. The non-transitory, computer readable medium of
claim 16, further comprising code configured to direct the
processor to construct a preconditioner by restricting the
solution to a lower level matrix.
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